Abstract
Rheumatoid arthritis (RA) is a systemic disease dominated by inflammatory synovitis. RA synovial macrophages tend undergo M1-type macrophage polarization. Then, polarized M1-type macrophages secrete abundant pro-inflammatory cytokines, causing joint and cartilage destruction. N6-methyladenosine (m6A) methylation modification, circular RNA (circRNA), microRNA (miRNA), messenger RNA (mRNA), etc. are involved in the inflammatory response of RA. We found that there is an imbalance of inflammatory polarization in RA, which is manifested by a sharp increase in inflammatory markers and a high inflammatory response. Here, we show that RA was closely associated with low expression of circ_0066715. The overexpression of circ_0066715 significantly increased the ETS1 levels in RA-FLS cells, decreased cytokine secretion by M1-type macrophages, elevated M2-type cytokines, and inhibited FLS proliferation. Interestingly, the overexpression of miR-486-5p significantly suppressed the attenuation of the cell function and the effect on M1 macrophage polarization caused by circ_0066715 positive expression. WTAP may be involved in the methylation process of ETS1 in RA. ETS1 m6A methylation levels were altered upon WTAP intervention. The overexpression or interference of circ_0066715 decreased or increased WTAP expression. Our findings provide a novel circRNA/miRNA/mRNA regulatory axis and m6A regulatory mechanism involved in the process of RA macrophage polarization, thereby providing a powerful diagnostic and therapeutic strategy for RA treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.