Abstract

2-Lysophosphatidylcholine (lysoPtdCho), a product of the hydrolysis of phosphatidylcholine catalyzed by phospholipase A2, greatly potentiates the activation of human resting T lymphocytes that is induced by a membrane-permeant diacylglycerol plus a calcium ionophore, as determined by the expression of the alpha subunit of the interleukin 2 receptor and thymidine incorporation into DNA. LysoPtdCho per se is inactive unless both diacylglycerol and a calcium ionophore are present. This effect of lysoPtdCho is also observed when diacylglycerol is replaced by a tumor-promoting phorbol ester. Other lysophosphatides including lysophosphatidylserine, lysophosphatidylinositol, and lysophosphatidic acid are inert except for lysophosphatidylethanolamine, which is far less effective than lysoPtdCho. Tracer experiments with radioactive choline indicate that, when T lymphocytes are stimulated with an antigenic signal, lysoPtdCho is indeed produced in a time-dependent fashion, although the concentration of this lysophospholipid accumulated remains to be quantitated. It suggests that phospholipase A2 is directly involved in the signal transduction pathway through protein kinase C to induce long-term cellular responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.