Abstract

BackgroundAlarmins S100A8 and S100A9 are recognized as hallmarks of severe COVID-19 and are primarily produced in myeloid cells, such as monocytes and neutrophils. As single-cell RNA-sequencing (scRNA-seq) data from patients with COVID-19 revealed the expression of S100A8/A9 in lymphoid cells in patients with severe COVID-19.ObjectiveWe investigated the characteristics of lymphoid cells expressing S100A8/A9 in COVID-19 patients.MethodsPublicly available scRNA-seq data from patients with mild (N = 12) or severe (N = 7) COVID-19 were reanalyzed. The data were further divided into the following two groups based on the time of sample collection (from infection-onset): within 6 days (early phase) and after 6 days (late phase). Differential expression and gene set enrichment analyses were performed between S100A8/A9High and S100A8/A9Low lymphoid cells. Finally, cell-cell interaction analysis was performed to investigate the role of lymphoid cells expressing high levels of S100A8/A9 in COVID-19.ResultsS100A8/A9 overexpression was observed in lymphoid cells, including B cells, T cells, and NK cells, in patients with severe COVID-19 (compared to patients with mild COVID-19). Cells exhibiting strong interferon/cytokine responses were found to be associated with the severity of COVID-19. Furthermore, differences in S100A8/A9-TLR4/RAGE interactions were confirmed between patients with severe and mild disease.ConclusionsLymphoid cells overexpressing S100A8/A9 contribute to the dysregulation of the innate immune response in patients with severe COVID-19, specifically during the early phase of infection. This study fosters a better understanding of the hyper-induction of pro-inflammatory cytokine expression and the generation of a cytokine storm in response to COVID-19 infection.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13258-022-01285-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.