Abstract

Infection with Helicobacter pylori is a primary culprit in the etiology of gastric disease, and its cell-wall lipopolysaccharide (LPS) is recognized as a potent endotoxin responsible for triggering a pattern of the mucosal inflammatory responses. The engagement by the LPS of gastric mucosal Toll-like receptor 4 (TLR4) leads to initiation of signal transduction events characterized by the activation of mitogen-activated protein kinase (MAPK) cascade, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K) pathway, and up-regulation in Src/Akt. These signaling events in turn exert their influence over H. pylori-elicited excessive generation of NO and PGE2 caused by the disturbances in nitric oxide synthase and cyclooxygenase isozyme systems, increase in epidermal growth factor receptor transactivation, and the induction in matrix metalloproteinase-9 (MMP-9) release. Interestingly, the extent of gastric mucosal inflammatory response to H. pylori is influenced by a peptide hormone, ghrelin, the action of which relays on the growth hormone secretagogue receptor type 1a (GHS-R1a)-mediated mobilization of G-protein dependent transduction pathways. Yet, the signals triggered by TLR-4 activation as well as those arising through GHS-R1a stimulation converge at MAPK and PLC/PKC/PI3K pathways that form a key integration node for proinflammatory signals generated by H. pylori LPS as well as for those involved in modulation of inflammation by ghrelin. Hence, therapeutic targeting these signals' convergence and integration node could provide a novel and attractive opportunities for developing more effective treatments of H. pylori-related gastric disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call