Abstract

Summary Reliable and affordable electricity systems based on variable energy sources, such as wind and solar may depend on the ability to store large quantities of low-cost energy over long timescales. Here, we use 39 years of hourly U.S. weather data, and a macro-scale energy model to evaluate capacities and dispatch in least cost, 100% reliable electricity systems with wind and solar generation supported by long-duration storage (LDS; 10 h or greater) and battery storage. We find that the introduction of LDS lowers total system costs relative to wind-solar-battery systems, and that system costs are twice as sensitive to reductions in LDS costs as to reductions in battery costs. In least-cost systems, batteries are used primarily for intra-day storage and LDS is used primarily for inter-season and multi-year storage. Moreover, dependence on LDS increases when the system is optimized over more years. LDS technologies could improve the affordability of renewable electricity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.