Abstract
Abstract Understanding of the oxygen reduction reaction (ORR) mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells. Herein, a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic (Fe and Co) carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways. The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe. The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen. Interestingly, the pre-adsorption of *OH resulted in the apparent change of metal atoms’ electronic states with the d-band center shifting toward the Fermi level, thereby boosting reaction activity. The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.