Abstract
AbstractSignificant summer land surface warming has been observed in the middle latitudes over East Asia, especially after the mid-1990s, which has evidently affected the East Asian weather and climate. Using multisource observations and reanalysis data during 1979–2013, this study explores the possible reasons for recent land surface warming over this region by considering atmospheric forcing and regional land–atmosphere interaction related to extratropical cyclones (ECs). Results show that there is a close relationship between land surface warming and weakened ECs over East Asia. Recent land surface warming was attributed to local atmospheric forcing and feedback of land–atmosphere interaction associated with weakened ECs. The abnormal large-scale circulation associated with anomalous ECs produced evident dynamic forcing on the land surface. Weakened ECs are usually accompanied by an abnormal high pressure system and anticyclonic circulation around Lake Baikal, which benefit the intensification of anomalous southerly wind in the rear of the anomalous anticyclone, leading to positive temperature advection and temperature increase over East Asia. Meanwhile, the anomalous adiabatic warming caused by abnormal descending motion associated with the anticyclonic anomaly also contributes to local warming. The feedback of local land–atmosphere interaction plays an important role in land surface warming. Weakened ECs increase both incident solar radiation and precipitation. The increased precipitation reduces the soil moisture and in turn weakens the surface evaporation and local cooling effect, resulting in land surface warming. Our findings are helpful for better understanding the mechanisms responsible for recent summer land surface warming over East Asia as well as its climatic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.