Abstract

This study examined whether cardiocyte load increases eIF-4F complex formation. To increase load in vitro, adult feline cardiocytes were electrically stimulated to contract (1 Hz, 5-ms pulses). eIF-4F complex formation, measured by eIF-4G association with eIF-4E, increased 57 +/- 16% after 4 h of contraction compared with controls. eIF-4F complex formation did not increase on electrical stimulation with 2,3-butanedione monoxime (BDM), an inhibitor of active tension. Both insulin and phorbol ester increased eIF-4F complex formation, but these increases were unaffected by BDM. Insulin caused a shift of eIF-4E binding proteins (4E-BPs) into their hyperphosphorylated gamma-isoforms and dissociation of 4E-BPs from eIF-4E. Rapamycin inhibited 4E-BP phosphorylation in response to insulin but had no effect on eIF-4F complex formation. Electrically stimulated contraction caused a partial shift of 4E-BP1 and 4E-BP2 into the gamma-isoforms, but it had no effect on 4E-BP association with eIF-4E. Rapamycin blocked the increase in eIF-4F complex formation in electrically stimulated cardiocytes and depressed contractility. These data indicate that cardiocyte load causes a tension-dependent increase in eIF-4F complex formation that does not require dissociation of 4E-BPs from eIF-4E.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.