Abstract

In vitro studies indicate that oxidatively modified low density lipoprotein (oxLDL) promotes leukocyte adhesion to the vascular endothelium, a constant feature of early atherogenesis. Using intravital fluorescence microscopy in the dorsal skinfold chamber model in awake Syrian golden hamsters, we studied whether (a) oxLDL elicits leukocyte/endothelium interaction in vivo, and whether (b) leukotrienes play a mediator role in this event. Leukocyte/endothelium interaction was assessed in the time course after intravenous injection of native human LDL (4 mg/kg body wt) and of oxLDL (7.5 microM Cu++, 6 h, 37 degrees C) into control hamsters and into hamsters, pretreated with the selective leukotriene biosynthesis inhibitor MK-886 (20 mumol/kg, i.v.). While no effect was seen after injection of native LDL, oxLDL elicited an immediate induction of leukocyte adhesion to the endothelium of arterioles and postcapillary venules. Total and differential leukocyte counts suggest that all leukocyte subsets were likewise affected by oxLDL with no specific preference for monocytes. Stimulation of leukocyte adhesion was entirely prevented in inhibitor-treated animals, suggesting the important mediator role of leukotrienes in oxLDL-induced leukocyte/endothelium interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.