Abstract

Inadequate blood supply to the expanding adipose tissue (AT) is involved in the unhealthy AT remodeling and cardiometabolic consequences of obesity. Because of the pathophysiological role of upregulated mineralocorticoid receptor (MR) signaling in the complications of obesity, this study tested the vasoactive properties of finerenone, a nonsteroidal MR antagonist, in arteries of human AT. Arteries isolated from the visceral AT of obese subjects were studied in a wire myograph. Finerenone resulted in a concentration-dependent relaxation of arteries precontracted with either the thromboxane-A2 analog U46619, ET-1, or high-K+ solution; the steroidal MR antagonist potassium canrenoate, by contrast, did not relax arteries contracted with either U46619 or high-K+ solution. Finerenone-induced relaxation after precontraction with U46619 was greater in the arteries of obese versus nonobese subjects. Mechanistically, the vasorelaxing response to finerenone was not influenced by preincubation with the nitric oxide synthase inhibitor L-NAME or by endothelium removal. Interestingly, finerenone, like the dihydropyridine Ca2+-channel blocker nifedipine, relaxed arteries contracted with the L-type Ca2+-channel agonist Bay K8644. In conclusion, finerenone relaxes arteries of human visceral AT, likely through antagonism of L-type Ca2+ channels. This finding identifies a novel mechanism by which finerenone may improve AT perfusion, hence protecting against the cardiometabolic complications of obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.