Abstract

Apurinic/apyrimidinic (AP) sites are some of the most frequent lesions in genomic DNA. It is widely accepted that, irrespective of their origin, AP sites are further processed by the base excision repair (BER) machinery, being the central intermediate of this process. Under special conditions, proteins, which recognize AP sites, are able to form covalent adducts with DNA. By combination of the cross-linking technique with mass-spectrometry analysis, Ku antigen (Ku)--the central player in nonhomologous end joining (NHEJ), the pathway of double-strand break (DSB) repair--was identified as a protein reactive to AP sites. Moreover, Ku was shown to be a 5'-dRP/AP lyase that acts near DSBs in NHEJ. The recent studies have demonstrated involvement of Ku in the different stages of BER. Here, Ku roles in NHEJ and BER pathways of DNA repair are overviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call