Abstract

Transcription factors play key roles in the formation of a multilayered cerebral cortex consisting of neurons and glial cells. Krüppel-like factor 4 (KLF4) is expressed in neural stem cells and controls axonal regeneration. Its dysregulation leads to hydrocephalus in postnatal mouse brains. Here, we further show that KLF4 regulates neurogenesis and radial migration of neurons in the developing cerebral cortex. Neural progenitors with constitutive expression of KLF4 fail to migrate and develop into mature neurons but, rather, form cells with a glial identity. Notably, the JAK-STAT pathway is altered by KLF4, with increased phosphorylation of STAT3 at tyrosine 705. Blocking STAT3 activation with a dominant negative form can rescue the migration defect induced by constitutive KLF4 expression. Furthermore, downregulation of endogenous KLF4 significantly promotes radial migration and the transition of newly born migrating neurons from multipolar to bipolar morphology. Together, these results suggest that precise regulation of KLF4 expression is critical to neuronal differentiation and migration during the formation of a cerebral cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.