Abstract
Doping light elements into ceramic coatings on different metal substrates by anodic-spark electrolysis (ASE) to improve their properties, such as wear and corrosion resistance, has recently attracted a lot of attention. In this study, nitrogen-doped Al2O3 composite ceramic coatings had been fabricated in eco-friendly KOH–NaNO2 electrolytes using the anodic-spark electrolysis (ASE) method after 9 min at a fixed applied ASE voltage (75 V higher than the breakdown voltages). To deposit a nitrogen-doped coating with high amounts of oxynitride phases possible, we thoroughly studied the ASE coatings deposited in different total variable salts concentrations (KOH+NaNO2) and NaNO2/KOH ratios of ASE electrolytes. The coating properties were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), and the electrochemical impedance spectroscopy (EIS) tests. The results indicated that the coating produced in the KOH–NaNO2 electrolyte with a low total variable salts concentration (2 gr.L−1) and a high NaNO2/KOH ratio value (3) is optimum in the investigated conditions. It has the highest percentage of nitrogen-doped phases, such as N-doped γ-Al2O3 and γ-AlON (γ-Al2.78O3.65N0.35), and a homogeneous morphology of surface with the smallest average size of pores (<14 μm2). This coating showed the significantly higher corrosion resistance with a 4.101104 × 106 Ω cm2 value compared to the uncoated aluminium substrate with a corrosion resistance value of 0.094195 × 106 Ω cm2 after 48 h of immersion in the 3.5 wt% NaCl solution. The approach presented herein provides an attractive way to modify the surface of aluminium alloys to improve corrosion behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.