Abstract

Participants exposed to a simulated slip with forward loss of balance (FLB) develop large lower limb joint moments which may be a limiting factor for those whose muscle-tendon units’ (MTUs) properties are deteriorated. Whether the age-related decline in these properties limits participants’ capacity to recover their balance following a slip with FLB remains unclear. We combined isokinetic dynamometry, ultrasound and EMG to understand how knee extensor and ankle plantarflexor muscle strength and power, rate of moment development, electromechanical delay, and tendon stiffness affected the balance of young (25.3 ± 3.9 years) and older adults (62.8 ± 7.1 years) when recovering from a single slip with FLB triggered whilst walking on a split-belt instrumented treadmill. Except for the patellar tendon’s stiffness, knee extensor and ankle plantarflexor electromechanical delays, older adults’ MTUs properties were deteriorated compared to those of young participants (p < 0.05). We found no significant relationship between age or the MTUs properties of participants and balance recovery. These findings provide additional support that neither maximal nor explosive strength training are likely to be successful in preventing a fall for healthy older adults, and that other type of interventions, such as task-specific training that has already proved efficacious in reducing the risk of falling, should be developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call