Abstract

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyzes the first step in the biosynthesis of peptidoglycan, involving the transfer of the intact enolpyruvyl moiety from phosphoenolpyruvate to the 3'-hydroxyl group of UDP-N-acetylglucosamine (UDPNAG). The enzyme is irreversibly inhibited by the antibiotic fosfomycin. The inactivation is caused by alkylation of a highly conserved cysteine residue (C115) that participates in the binding of phosphoenolpyruvate. The three-dimensional structure of the enzyme suggests that two residues may play a decisive role in fosfomycin binding: K22 and R120. To investigate the role of these residues, we have generated the K22V, K22E, K22R and R120K single mutant proteins as well as the K22V/R120K and K22V/R120V double mutant proteins. We demonstrated that the K22R mutant protein behaves similarly to wild-type enzyme, whereas the K22E mutant protein failed to form the covalent adduct. On the other hand, the K22V mutant protein requires the presence of UDPNAG for the formation of the adduct indicating that UDPNAG plays a crucial role in the organization of productive interactions in the active site. This model receives strong support from heat capacity changes observed for the K22V/R120K and R120K mutant proteins: in both mutant proteins, the heat capacity changes are markedly reduced indicating that their ability to form a closed protein conformation is impeded due to the R120K exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.