Abstract
Monocyte migration across the vascular endothelium of blood vessels is a key early event in atherosclerosis. The mechanisms underlying monocyte transendothelial migration (TEM), however, are still not completely understood. Here we studied the role of junctional adhesion molecule-like protein (JAML) in regulating monocyte TEM. Firstly, by Western blot and flow cytometry, we showed that JAML was strongly expressed in monocytes and monocyte surface expression of JAML was upregulated by monocyte chemotaxis protein-1 stimulation. Both monocyte adhesion to and migration across tumor necrosis factor-alpha (TNFalpha) preactivated human microvascular endothelial cell (HMEC-1) monolayers were dose-dependently reduced by anti-JAML antiserum or soluble extracellular JAML recombinant. Secondly, short-term exposure of human monocytes and THP-1 cells to advanced glycation end products increased cell surface JAML expression, which was correlated with enhanced cell adhesion and TEM. In contrast, knockdown of JAML in THP-1 monocytes decreased both adhesion and transmigration of THP-1 monocytes. Finally, direct binding assay of the soluble JAML to HMEC-1 monolayers suggested that endothelial coxsackie and adenovirus receptor (CAR) may serve as one of the ligands for JAML. Monocytic JAML plays a critical role in regulating monocyte TEM probably via binding to the endothelial CAR and other tight junction-associated adhesive molecules.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.