Abstract

Abstract An analysis for boundary layer flows caused by natural convection due to heat generation caused by the Joule heating effect is presented. The integral approximation approach developed by Von Karman is used to model the boundary layer flow in the system. Effects of the heat generation on temperature and velocity profiles as well as on the boundary layer thickness are discussed, and their implication for possible convective mixing effects near the electrode region is highlighted. These are important pieces of information when designing applications in electrokinetic remediation and separation of biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.