Abstract

Solid-state kinetics was developed from kinetic concepts for reactions in homogeneous phase systems, which has created considerable debate over issues such as variable activation energy. This behavior has been viewed by some as a violation of basic chemical kinetic principles. Variation in activation energy has been detected by isoconversional or ‘model-free’ calculation methods. The relationship between different calculation methods and the occurrence of variable activation energy was investigated in this work by employing model-fitting and isoconversional methods to analyze simulated isothermal data. In addition, these approaches were applied for sulfameter–dioxolane solvate desolvation data. We showed that variable activation energy is of two types—a true variation that results from the complex nature of the solid-state process and an artifactual one resulting from the use of some isoconversional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.