Abstract

Heterogeneous uptake of hypoiodous acid (HOI), the dominant inorganic iodine species in the marine boundary layer (MBL), on sea‐salt aerosol (SSA) to form iodine monobromide and iodine monochloride has been adopted in models with assumed efficiency. Recently, field measurements have reported a much faster rate of this recycling process than previously assumed in models. Here, we conduct global model simulations to quantify the range of effects of iodine recycling within the MBL, using Conventional, Updated, and Upper‐limit coefficients. When considering the Updated coefficient, iodine recycling significantly enhances gaseous inorganic iodine abundance (∼40%), increases halogen atom production rates (∼40% in I, >100% in Br, and ∼60% in Cl), and reduces oxidant levels (−7% in O3, −2% in OH, and −4% in HO2) compared to the simulation without the process. We appeal for further direct measurements of iodine species, laboratory experiments on the controlling factors, and multiscale simulations of iodine heterogeneous recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.