Abstract

Microorganism-mediated Mn(Ⅱ) removal has gained increasing attention as a valuble bioremediation approach. In this study, a novel strain Stenotrophomonas sp. MNB17 — obtained from marine sediments — was found to show Mn(Ⅱ) removal efficiencies of 98.51–99.38% within 7 days and 92.24% within 20 days at Mn(Ⅱ) concentrations of 10–40 mM and 50 mM, respectively. On day 7, 80.44% of 50 mM Mn(Ⅱ) was oxidized to Mn(Ⅲ/Ⅳ), whereas only 2.11–2.86% of 10–40 mM Mn(Ⅱ) was oxidized. This difference in the proportion of Mn-oxides suggested that the strain MNB17 could remove soluble Mn(Ⅱ) via distinct mechanisms under different Mn(Ⅱ) concentrations. At 10 mM Mn(Ⅱ), indirect mechanisms were employed by strain MNB17 to remove Mn(Ⅱ). The sufficient energy generated by increased cellular respiration led to enhanced ammonification, and MnCO3 was the main component of the Mn-precipitates (97.27%). Meanwhile, intracellular fatty acids were degraded and served as an important carbon source for respiration. At 50 mM Mn(Ⅱ), most of the soluble Mn(Ⅱ) was oxidized, and Mn-oxides dominated the Mn-precipitates (80.44%). Mn(Ⅱ) oxidation likely contributed to electrons for energy production, as the down-regulation of respiratory pathways resulted in a deficit of electron supply, which warrants futher study. The exogenous addition of tricarboxylic acid cycle substrates (malate, α-ketoglutarate, oxaloacetate, succinate, and fumarate) was found to accelerate Mn(Ⅱ) removal as MnCO3 at a concentration of 50 mM. Overall, this study reports a novel strain MNB17 with the biotechnological potential of Mn(Ⅱ) removal and elucidates the function of cellular energy metabolism during the Mn(Ⅱ) removal process. In addition, it demonstrates the potential of aerobic respiration-related substrates in accelerating the removal of high concentrations of Mn(Ⅱ) for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.