Abstract

The process of beta(2) integrin activation, which enhances the interaction of these heterodimers with ligands, plays a crucial role in the adherence-dependent neutrophilic polymorphonuclear leukocytes' (PMN) responses to TNF. Our previous observation, showing that a marked decrease of the high basal Cl(-) content (Cl(-)(i)) is an essential step in the TNF-induced activation of PMN, stimulated this study, which investigates the role of alterations of Cl(-)(i) in the activation of beta(2) integrins triggered by TNF. Here we show that TNF enhances the expression of activation-specific neoepitopes of beta(2) integrins, namely, epitope 24, a unique epitope present on all three leukocyte integrin alpha subunits, and epitope CBRM1/5, localized to the I domain on the alpha-chain of Mac-1 (CD11bCD18). Moreover, we demonstrate that the conformational changes underlying the expression of the neoepitopes are dependent on a drop in Cl(-)(i) because 1) inhibition of Cl(-)(i) decrease is invariably accompanied by inhibition of beta(2) integrin activation, 2) Cl(-)(i) decrease induced by means other than agonist stimulation, i.e., by placing PMN in Cl(-)-free buffers, activates beta(2) integrins, and 3) restoration of the original Cl(-)(i) levels is accompanied by deactivation of beta(2) integrins. We also show that Cl(-)(i) decrease is required for TNF-induced cytoplasmic alkalinization, but such a rise in pH(i) does not seem to be relevant for beta(2) integrin activation. The results of our study emphasize the role of Cl(-) as a new PMN "second messenger."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.