Abstract

This study aimed to assess the impact of the "often neglected" intestinal brush border membranes (BBMs) hydrolases on dietary peptides, exploring the possibility that the disintegration of proteins progressed in the small intestine up to a "core" of intrinsically stable oligopeptides, persisting independently on the up-stream breakdown. Samples of sodium caseinate, skim milk powder, and whey protein isolate were submitted to in vitro simulated gastropancreatic digestion using two different procedures: (i) a simplified model involving the main compartmental specific proteases; (ii) a static digestion method based on a frameset of parameters inferred from in vivo. The gastroduodenal digesta were further hydrolyzed with peptidases from porcine jejunal BBM. The peptidomes arising from the two digestion models, characterized by combined HPLC and MS techniques, differed to some extent. However, only specific protein domains survived digestion, among which are potential bioactive or immunogenic (food allergy) peptides. The degree of hydrolysis (DH) after BBM digestion (70-77%) practically did not differ between the digestion models and significantly increased the DH after duodenal steps. Any in vitro digestion model should be supplemented with a jejunal phase to realistically determine the bioaccessibility and bioavailability of dietary peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.