Abstract

We study the forced rupture of adhesive contacts between monomers that are not covalently linked in a Rouse chain. When the applied force (f) to the chain end is less than the critical force for rupture (f{c}), the reversible rupture process is coupled to the internal Rouse modes. If f/f{c}>1 the rupture is irreversible. In both limits, the nonexponential distribution of contact lifetimes, which depends sensitively on the location of the contact, follows the double-exponential (Gumbel) distribution. When two contacts are well separated along the chain, the rate limiting step in the sequential rupture kinetics is the disruption of the contact that is in the chain interior. If the two contacts are close to each other, they cooperate to sustain the stress, which results in an "all-or-none" transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.