Abstract

We have previously described an assay to quantify the serum neutralization of bacterial lipopolysaccharide which is based on a spectrophotometric Limulus amoebocyte lysate test (T.J. Novitsky, P.F. Roslansky, G.R. Siber, and H.S. Warren, J. Clin. Microbiol. 21:211-216, 1985). Studies since have shown that serum samples drawn from patients with leukemia and fever, gram-negative or gram-positive bacterial infections, or shock caused by gram-negative bacteria neutralize approximately 10-fold more lipopolysaccharide than do samples from normal controls. These findings suggested that the increased neutralization might reflect an acute-phase response and raised the question of whether it might be under the control of interleukin-1. To answer this question, we studied the neutralization of lipopolysaccharide in serum samples drawn from rabbits before and after the administration of crude interleukin-1, prepared from activated macrophage supernatants, and recombinant human interleukin-1. Crude interleukin-1 induced a 5.7-fold increase in serum neutralization 24 h after intravenous injection, and cloned interleukin-1 induced a 3.0-fold increase (P less than or equal to 0.01 and 0.05, respectively). In individual rabbits given identical doses of crude interleukin-1 on a weight basis, the serum-neutralizing ability correlated significantly with three activities of interleukin-1: rise in temperature (r2 = 0.558; P less than or equal to 0.01), decrease in serum iron (r2 = 0.534; P less than or equal to 0.01), and increase in serum copper (r2 = 0.323; P less than or equal to 0.05). We conclude that the increase in neutralization of bacterial lipopolysaccharide by serum samples drawn from patients with inflammatory states is mediated, at least in part, by interleukin-1, presumably through the induction of acute-phase serum proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.