Abstract

Tumor cells are characterized by uncontrolled growth, invasion to surrounding tissues, and metastatic spread to distant sites. Mortality from cancer is often due to metastasis since surgical removal of tumors can enhance and prolong survival. The integrins constitute a family of transmembrane receptor proteins composed of heterodimeric complexes of noncovalently linked alpha and beta chains. Integrins function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions and transduce signals from the ECM to the cell interior and vice versa. Hence, the integrins mediate the ECM influence on cell growth and differentiation. Since these properties implicate integrin involvement in cell migration, invasion, intra- and extra-vasation, and platelet interaction, a role for integrins in tumor growth and metastasis is obvious. These findings are underpinned by observations that the integrins are linked to the actin cytoskeleton involving talin, vinculin, and alpha-actinin as intermediaries. Such cytoskeletal changes can be manifested by rounded cell morphology, which is often coincident with tumor transformation via decreased or increased integrin expression patterns. For the various types of cancers, different changes in integrin expression are further associated with tumor growth and metastasis. Tumor progression leading to metastasis appears to involve equipping cancer cells with the appropriate adhesive (integrin) phenotype for interaction with the ECM. Therapies directed at influencing integrin cell expression and function are presently being explored for inhibition of tumor growth, metastasis, and angiogenesis. Such therapeutic strategies include anti-integrin monoclonal antibodies, peptidic inhibitors (cyclic and linear), calcium-binding protein antagonists, proline analogs, apoptosis promotors, and antisense oligonucleotides. Moreover, platelet aggregation induced by tumor cells, which facilitates metastatic spread, can be inhibited by the disintegrins, a family of viper venom-like peptides. Therefore, adhesion molecules from the integrin family and components of angiogenesis might be useful as tumor progression markers for prognostic and for diagnostic purposes. Development of integrin cell expression profiles for individual tumors may have further potential in identifying a cell surface signature for a specific tumor type and/or stage. Thus, recent advances in elucidating the structure, function, ECM binding, and signaling pathways of the integrins have led to new and exciting modalities for cancer therapeutics and diagnoses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.