Abstract

A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.