Abstract

An increase in intracellular calcium concentration is one of the major initial steps in B cell activation following antigen receptor (BCR) ligation. We show herein that in C57BL/6 murine B lymphocytes and in model cell lines, BCR-mediated calcium ion (Ca(2+)) influx occurs via highly selective Ca(2+) release-activated channels, and stromal interaction molecule 1 (STIM1) plays an important role in this pathway. We also demonstrate the temporal relation between Ca(2+)-dependent signaling events and formation of the immune synapse. Our data indicate that cytoplasmic Ca(2+) levels in areas adjacent to the immune synapse differ from those in the rest of the cytoplasm. Finally, a comparison of phosphorylation patterns of BCR-triggered signaling proteins in the presence or absence of Ca(2+) revealed the unanticipated finding that initial BCR-triggered, Ca(2+)-dependent tyrosine phosphorylation events involve predominantly Ca(2+) released from intracellular stores and that influx-derived Ca(2+) is not essential. This suggests a different role for this phase of Ca(2+) influx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.