Abstract

We evaluated whether LIM-kinase 2 inhibitor (LIMK2i) could improve erectile function by suppressing corporal fibrosis through the normalization of the Rho-associated coiled-coil protein kinase 1 (ROCK1)/LIMK2/Cofilin pathway in a rat model of cavernous nerve crush injury (CNCI). Sixty 11-week-old male Sprague-Dawley rats were divided equally into five groups: sham surgery (S), CNCI (I), and CNCI treated with low-dose (L), medium-dose (M), and high-dose (H) LIMK2i. The L, M, and H groups were treated with a daily intraperitoneal injection of LIMK2i (2.5, 5.0, and 10.0 mg kg−1 body weight, respectively) for 1 week after surgery. The erectile response was assessed using electrostimulation at 1 week, postoperatively. Penile tissues were processed for Masson's trichrome staining, double immunofluorescence, and Western blot assay. Erectile responses in the H group improved compared with the I group, while the M group showed only partial improvement. A significantly decreased smooth muscle/collagen ratio and an increased content of fibroblasts positive for phospho-LIMK2 were noted in the I group. The M and H groups revealed significant improvements in histological alterations and the dysregulated LIMK2/Cofilin pathway, except for LIMK2 phosphorylation in the M group. The inhibition of LIMK2 did not affect the ROCK1 protein expression. The content of fibroblasts positive for phospho-LIMK2 in the H group returned to the level found in the S group, whereas it did not in the M group. However, the L group did not exhibit such improvements. Our data suggest that the inhibition of LIMK2, particularly with administration of 10.0 mg kg−1 body weight LIMK2i, can improve corporal fibrosis and erectile function by normalizing the LIMK2/Cofilin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call