Abstract

The nonlinear dynamics of isolated flexible but rotating many-body atomic systems is theoretically investigated, following the dependence on initial conditions through Lyapunov exponents. The tangent-space equations of motion that rule the time evolution of such small perturbations are rewritten in the rotating reference frame, and the various contributions of the centrifugal, Coriolis, and Euler forces are determined. Evaluating the largest Lyapunov in the rotating frame under various approximations, we show on the example of Lennard-Jones clusters that the dynamics in phase space is qualitatively at variance with the effective dynamics on the centrifugal energy surface. Coupling terms between positions and momenta in phase space, especially arising from the Coriolis force, are essential to recover the measure of chaos in the fixed reference frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.