Abstract

In the past few years, measurement of drug release from pharmaceutical dosage forms has been a focus of extensive research because the release profile obtained in vitro can give an indication of the drug's performance in vivo. Currently, there are no compendial in vitro release methods designed for liposomes owing to a range of experimental challenges, which has created a major hurdle for both development and regulatory acceptance of liposome-based drug products. In this paper, we review the current techniques that are most often used to assess in vitro drug release from liposomal products; these include the membrane diffusion techniques (dialysis, reverse dialysis, fractional dialysis, and microdialysis), the sample-and-separate approach, the in situ method, the continuous flow, and the modified United States Pharmacopeia methods (USP I and USP IV). We discuss the principles behind each of the methods and the criteria that assist in choosing the most appropriate method for studying drug release from a liposomal formulation. Also, we have included information concerning the current regulatory requirements for liposomal drug products in the United States and in Europe. In light of increasing costs of preclinical and clinical trials, applying a reliable in vitro release method could serve as a proxy to expensive in vivo bioavailability studies. Graphical Abstract Appropriate in-vitro drug release test from liposomal products is important to predict the in-vivo performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.