Abstract

Solder joints experience repeated reverse straining during thermal excursions encountered in service, as a consequence of stresses that arise due to coefficient of thermal expansion (CTE) mismatches between entities present in the joint. They also undergo stress relaxation under fixed strain during dwell times at temperature extremes encountered during service. In order to understand the fundamental processes involved under such conditions, cyclic shear straining with associated stress relaxation at the shear strain extremes were imposed during stress relaxation of pre-strained solder joints at various temperatures. Results of such studies were compared with previously reported findings from monotonic shear stressing and stress relaxation tests. Residual stress during stress relaxation under repeated reverse straining exhibited significant decrease for specimens deformed to a higher pre-strain at a higher pre-strain rate, at lower temperature. Stress relaxation during subsequent cycles of straining was found to be strongly dependant on the test temperature and the imposed pre-strain amplitude and pre-strain rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.