Abstract

Malaria is induced by infection with Plasmodium parasites, which are genetically diverse, and the immune response to Plasmodium infection has both allele-specific and cross-reactive components. To determine the role of the cross-reactive immune response in the protection and disease manifestation in heterologous Plasmodium infection, we used infection models of P. chabaudi chabaudi (Pcc) and P. berghei ANKA (PbA). CD4+ T cells primed with Pcc infection exhibited strong cross-reactivity to PbA antigens. We infected C57BL/6 mice with Pcc and subsequently treated them with an anti-Plasmodium drug. The Pcc-primed mice exhibited reduced parasitemia and showed no signs of experimental cerebral malaria after infection with PbA. CD4+ T cells from the Pcc-primed mice produced high levels of IFN-γ and IL-10 in response to PbA early after PbA infection. The blockade of IL-10 signaling with anti-IL-10 receptor antibody increased the proportion of activated CD4+ and γδ T cells and the IFN-γ production by CD4+ T cells in response to PbA antigens, while markedly reducing the levels of parasitemia. In contrast, IL-10 blockade did not have a significant effect on parasitemia levels in unprimed mice after PbA infection. These data suggest a potent regulatory role of IL-10 in the cross-reactive memory response to the infection with heterologous Plasmodium parasites leading to the inhibition of the protective immunity and pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.