Abstract

Abstract Ikaros, a C2H2 zinc finger transcription factor, is a critical regulator of hematopoiesis and tumor suppression in the lymphoid lineage. The C2H2 zinc finger is the most prevalent DNA-binding motif in mammals, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, and to investigate in greater depth the role of Ikaros in hematopoiesis and tumor suppression, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling and DNA-binding analysis, reveal that different subsets of fingers within multi-finger transcription factors can modulate binding to different target sequences and regulate distinct target genes and biological functions. These novel mutant strains provide a powerful tool to elucidate Ikaros' role in hematopoiesis and tumor suppression. Furthermore, this study demonstrates that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call