Abstract

Overexpression of hypoxia-inducible factors (HIF), HIF-1alpha and HIF-2alpha, leads to the up-regulation of genes involved in proliferation, angiogenesis, and glucose metabolism and is associated with tumor progression in several cancers. However, the contribution of HIF-1alpha versus HIF-2alpha to vascular endothelial growth factor (VEGF) expression and other HIF-regulated target genes under different conditions is unclear. To address this, we used small interfering RNA (siRNA) techniques to knockdown HIF-1alpha and/or HIF-2alpha expression in response to hypoxia, insulin-like growth factor (IGF)-I, or renal carcinoma cells expressing constitutively high basal levels of HIF-1alpha and/or HIF-2alpha due to loss of von Hippel-Lindau (VHL) function. We found that HIF-1alpha primarily regulates transcriptional activation of VEGF in response to hypoxia and IGF-I compared with HIF-2alpha in MCF-7 cells. We also observed a reciprocal relationship between HIF-1alpha and HIF-2alpha expression in hypoxia in these cells: HIF-2alpha siRNA enhanced HIF-1alpha-mediated VEGF expression in MCF-7 cells in response to hypoxia, which could be completely blocked by cotransfection with HIF-1alpha siRNA. In contrast, in renal carcinoma cells that constitutively express HIF-1alpha and HIF-2alpha due to loss of VHL function, we found that high basal VEGF, glucose transporter-1, urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 expression was predominantly dependent on HIF-2alpha. Finally, we showed that a newly identified small-molecule inhibitor of HIF-1, NSC-134754, is also able to significantly decrease HIF-2alpha protein expression and HIF-2alpha-regulated VEGF levels in renal carcinoma cells. Our data have important implications for how we target the HIF pathway therapeutically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.