Abstract

Cyclophosphamide (CP) is a commonly used chemotherapeutic and immunosuppressive alkylating agent. However, cardiac adverse effects of CP interfere with its clinical benefit. Cardio-oncology research is currently an important issue and finding effective cardiopreserving agents is a critical need. For the first time, we aimed to detect if dapagliflozin (DAP) could ameliorate CP-induced cardiac injury and investigated the role of hypoxia inducible factor α (HIF1α)/vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) pathway. Forty male Wistar albino rats were included in the current model. Studied groups are: control group; CP-induced cardiotoxicity group; CP group treated with DAP; CP group treated with DAP and administered a nitric oxide synthase inhibitor; nitro-ω-L-arginine (L-NNA) before DAP to explore the role of eNOS. Our data revealed that CP could induce cardiac damage as manifested by significant increases in cardiac enzymes, blood pressure, malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), HIF1α, sodium glucose co-transporter 2 (SGLT2) and cleaved caspase-3 levels with toxic histopathological changes. However, there are significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, and eNOS. On the opposite side, co-administration of DAP showed marked improvement of CP-induced cardiac damage that may be due to its ability to inhibit SGLT2, antioxidant, anti-inflammatory and anti-apoptotic properties. Results showed decreasing the cardioprotective effect of DAP on administration of L-NNA, reflecting the critical effect of eNOS in mediating such protection. DAP could reduce CP cardiotoxicity based upon its ability to modulate SGLT2 and HIF1α/VEGF/eNOS signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call