Abstract

Objective: To explore the role of hypoxia-inducible factor-1α (HIF-1α) in formation of multidrug resistance (MDR) induced by microenvironment and to find a new and effective molecular target on preventing and reversing chemoresistance in hepatocellular carcinoma (HCC). Methods: In HepG2 cells exposed to hypoxia, low glucose or transfected by plasmid pcDNA3/HBX, the expression of HIF-1α mRNA and protein was respectively detected using real-time fluorescent quantitative PCR and Western blot technique and its expression localization was investigated by iinmunocytochemical technique. Plasmid pcDNA3/HIF-1α was transfected into HepG2 cells and then the expression of multidrug resistance related genes mdr1, multidrug resistance-associated protein 1 (MRP1) and lung resistance protein (LRP) in transfected cells was determined by the same methods. Results: In HepG2 cells respectively exposed to hypoxia, low glucose or transfected by plasmid pcDNA3/HBX, HIF-1α was overexpressed at mRNA and protein levels to varying degrees and translocated into nucleus. The gene expression levels of mdr1, MRP1 and LRP in HepG2 cells transfected by plasmid pcDNA3/HIF-1α were respectively increased by 2.4±0.2, 2.2±0.3 and 2.3±0.4 folds as compared with those in non-transfected HepG2 cells (all P0.01) and similar changes were observed in protein level. Conclusion: Microenvironmental factors around HCC could modulate the transcription of the MDR related genes by nuclear transcript factor HIF-1α, thereby conferred MDR of HCC. Up-regulation of HIF-1α expression could hold a central position in the formation of MDR of HCC induced by microenvironment. HIF-1α probably becomes a new and effective molecular target on preventing and reversing MDR in HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call