Abstract

Leptin is an adipose tissue hormone which plays an important role in regulating energy homeostasis. Amphetamine (AMPH) is a drug of appetite suppressant, which exerts its effect by decreasing the expression of hypothalamic neuropeptide Y (NPY) and increasing that of cocaine- and amphetamine-regulated transcript (CART). This study investigated whether leptin, the leptin receptor (LepRb) and the signal transducer and activator of transcription-3 (STAT3) were involved in NPY/CART-mediated appetite suppression in AMPH-treated rats. Rats were given AMPH daily for four days, and changes in the levels of blood leptin and hypothalamic NPY, CART, LepRb, Janus kinases 2 (JAK2), and STAT3 were assessed and compared. During the AMPH treatment, blood leptin levels and hypothalamic NPY expression decreased, with the largest reduction observed on Day 2. By contrast, the expression of hypothalamic CART, LepRb, JAK2, and STAT3 increased, with the maximum response on Day 2. Furthermore, the binding activity of pSTAT3/DNA increased and was expressed in similar pattern to that of CART, LepRb, and JAK2. An intracerebroventricular infusion of NPY antisense 60min prior to AMPH treatment increased the levels of leptin, as well as the expression in LepRb, JAK2, and CART, whereas an infusion of STAT3 antisense decreased these levels and the expression of these parameters. The results suggest that blood leptin and hypothalamic LepRb-JAK2-STAT3 signaling involved in NPY-CART-regulated appetite suppression in AMPH-treated rats. The findings may aid understanding the role of leptin-LepRb during the treatment of anorectic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call