Abstract

The role of hydroxyl radical is investigated in electrochemical oxidation of organic contaminants with naphthalene as a model compound. The strategy employed was competitive kinetic for hydroxyl radical between naphthalene and other hydroxyl scavengers if the hydroxyl radical is produced in situ at the anode by the electrolysis of water. Methanol, d3-methanol, acetone and d6-acetone were used as competitors for hydroxyl radical and their molar concentrations were calculated based on their reaction constants with hydroxyl radical. The hydroxyl radical was not responsible for naphthalene loss in these experiments. The first order reaction rate constants in the batch experiments containing only naphthalene, 2 mM of each of acetone and d6-acetone were 0.093, 0.094 and 0.118 h −1, respectively. Higher concentrations (4 mM) acetone and d6-acetone did not affect naphthalene degradation. Rate constants using methanol and d6-methanol as competitors for hydroxyl radical in batch degradations test were 0.128 and 0.099 h −1, respectively. Based on the naphthalene degradation trends and reaction rate constants, it was concluded that, under the given set of conditions, hydroxyl radical was not responsible for naphthalene degradation during electrolytic degradation tests. This research suggests that the role of hydroxyl radical should be considered very carefully in modeling such indirect electrolytic oxidation processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call