Abstract

The corrosion inhibition mechanism of cerium hydroxycinnamate compounds has been studied and compared as an effective corrosion inhibitor for steel in an aqueous 0.6 M NaCl solution. Surface analysis results showed that the surface of steel coupons exposed to solutions containing cerium hydroxycinnamate compounds has less signs of corrosion attack due to a formation of the protective film, while the surface of mild steel coupons exposed to 0.6 M chloride solution without inhibitor additions was severely corroded due to pitting. Electrochemical results performed a good inhibition performance and information of the formed protective deposit that hinders the electrochemical corrosion reactions with a dominance of anodic inhibition mechanism. The results also indicated that the addition of cerium hydroxycinnamate compounds to 0.6 M NaCl solution could mitigate electrochemical corrosion reactions, reduce protective and double layer CPE magnitudes, and improve protective and charge transfer resistances. Furthermore, cerium 2-hydroxycinnamate showed better efficient corrosion inhibitor in comparison with cerium 4-hydroxycinnamate for steel in aqueous media containing 0.6 M chloride ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.