Abstract

A continuum model is developed to predict the dielectrophoretic polarizability of coiled DNA molecules under the action of an alternating current electric field. The model approximates the coiled DNA molecule as a charged porous spherical particle. The model explains the discrepancies among scaling laws of polarizability of different-sized DNA molecules with contour length and such discrepancies are attributed to different hydrodynamic behavior. With zero or one fitting parameter, theoretical predictions are in good agreement with various experimental data, even though in experiments there are some uncertainties in regard to certain parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.