Abstract

Streptococcus intermedius is found in biofilms on teeth and as a commensal member of the gastrointestinal and urinary floras, but may also be associated with deep-seated purulent infections and infective endocarditis. S. intermedius produces hyaluronidase, an enzyme that breaks down hyaluronan (HA), a major component of the extracellular matrix of connective tissue. We investigated the involvement of hyaluronidase in S. intermedius biofilm formation and dispersal as well as adhesion to human cells. The hyaluronidase activity and expression of the hyl gene were higher in growth media supplemented with HA. Inactivation of the S. intermedius hyaluronidase resulted in a mutant that formed up to 31 % more biofilm in media supplemented with HA. Hyaluronidase added to the medium caused dispersal of S. intermedius biofilm. Adhesion to epithelial cells was similar in the wild-type and the hyaluronidase mutant. We concluded that hyaluronidase may be important for S. intermedius detachment from biofilms but not for adhesion to epithelial cells. The ability of S. intermedius to detach from the surface and to spread may be crucial in the pathogenicity of this micro-organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call