Abstract

1. The purpose of this paper was to characterize cytochrome P450 (CYP) enzymes involved in N-dealkylation of a new oral erectogenic, DA-8159 to DA-8164, a major circulating active metabolite, in human liver microsomes and to investigate the inhibitory potential of DA-8159 on CYP enzymes.2. CYP3A4 was identified as the major enzyme responsible for DA-8159 N-dealkylation to DA-8164 based on correlation analysis and specific CYP inhibitor and antibody-mediated inhibition study in human liver microsomes, and DA-8159 metabolism in cDNA expressed CYP enzymes. There is the possibility of drug-drug interactions when prescribing DA-8159 concomitantly with known inhibitors or inducers of CYP3A4.3. DA-8159 was found to be only a very weak inhibitor of eight major CYPs (1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4), the largest inhibition occurring against CYP2D6 (IC50 67.7 μM) in human liver microsomes. Drug–drug interactions would not be predicted on the basis of DA-8159 inhibiting the metabolism of coadministered drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.