Abstract

Classical models of decision-making do not incorporate for the role of influence and honesty that affects the process. This paper develops on the theory of influence in social network analysis. We study the role of influence and honesty of individual experts on collective outcomes. It is assumed that experts have the tendency to improve their initial predilection for an alternative, over the rest, if they interact with one another. It is suggested that this revised predilection may not be proposed with complete honesty by the expert. Degree of honesty is computed from the preference relation provided by the experts. This measure is dependent on average fuzziness in the relation and its disparity from an additive reciprocal relation. Moreover, an algorithm is introduced to cater for incompleteness in the adjacency matrix of interpersonal influences. This is done by analysing the information on how the expert has influenced others and how others have influenced the expert.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.