Abstract
In chloroplast stroma, dynamic pH change occurs in response to fluctuating light conditions. We investigated the pH-dependent electron transfer activity between ferredoxin-NADP+ reductase (FNR) and ferredoxin (Fd) isoproteins from maize leaves. By increasing pH (from 5.5 to 8.5), the electron transfer activity from FNR to photosynthetic-type Fd (Fd1) significantly increased while the activity to nonphotosynthetic type Fd (Fd3) decreased, which was mainly due to their differences in the pH dependency of Km for Fd. Mutation of His78 of Fd1 to Val, corresponding amino acid residue in Fd3, lost the pH dependency, indicating a regulatory role of the His78 in the interaction with FNR. We previously showed that the interaction between FNR and Fd was weakened by the allosteric binding of NADP(H) on FNR. His78Val Fd1 mutant largely suppressed this negative cooperativity. These results indicate the involvement of Fd1 His78 in pH dependency and negative cooperativity in the interaction with FNR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.