Abstract

Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5′-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if ‘glucose-excited’ VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call