Abstract

Self-organized vegetation patterns are an amazing aspect of dryland ecosystems; in addition to being visually appealing, patterns control how these water-deprived systems react to escalating environmental stress. Although there is a wide variety of vegetation patterns, little is known about the mechanisms behind spiral patterns. The well-known models that explain other vegetation patterns such stripes, rings, and fairy circles cannot account for these spirals. Here we have adopted a modeling approach in which the interplay between herbivore grazing and vegetation is found to be the reason why spirals form. To comprehend the nonlinear dependence of grazing on the availability vegetation, we have introduced a grazing term that gets saturated when forage is abundant. To account for the impact of the spatial nonhomogeneity in vegetation layout, it is thought that grazing is dependent on mean vegetation density rather than density at a single site. Results show how the system dynamics is changed fundamentally depending on the different types of grazing response. Incorporation of nonlocality into the herbivore grazing leads to spiral-shaped vegetation patterns only in natural grazing scenarios; however, no patterning is seen in human controlled herbivory. Overall, our research points to the nonlocal, nonlinear grazing behavior of herbivores as one of the major driving forces for the development of spiral patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call