Abstract

Hepatocyte growth factor (HGF), its transmembrane tyrosine kinase receptor (c-Met), and urokinase type plasminogen activator (uPA) is a key protein in the plasminogen activation system, which plays a proteolytically important role in the invasion and metastasis of various types of cancers. However, the mechanisms by which HGF/c-Met signaling mediates cancer progression and metastasis are unclear. This study was designed to investigate the roles of HGF/c-Met in tumor progression and metastasis in HepG2 and Hep3B hepatoma cell lines. Treatment with HGF increased c-Met phosphorylation in a dose-dependent manner. Activity of c-Met phosphorylation peaked 1-3 min after HGF treatment and then declined. HGF enhanced the protein level and the activity of uPA in HepG2 and Hep3B cells, and the uPAR protein level also increased in a HGF dose-dependent manner. HGF increased cell invasion through the Matrigel. A monoclonal antibody against human uPA receptor, mAb 3936, inhibited HGF-mediated tumor cell invasion in a dose-dependent manner. Down-regulation of uPA using uPA-shRNA induced a decrease in in vitro cell invasion. These results suggest that hepatoma cells express functional c-Met, which may provide a target for a therapeutic basis to interfere with metastases of cancer cells by inhibiting uPA system-mediated proteolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call