Abstract
Zika virus (ZIKV) is an emerging arbovirus and its infection associates with neurologic diseases. Whether heparan sulfate (HS), an attachment factor for many viruses, plays a role in the ZIKV infection remains controversial. Our study generated several HS biosynthesis-deficient cell clones by disrupting SLC35B2, B3GAT3, or B4GALT7 gene using the CRISPR/Cas9 system. The HS deficiency did not affect the viral attachment and internalization of ZIKV, but reduced the attachment of Dengue virus (DENV) 2. The early RNA and protein levels of ZIKV and DENV2 were impaired in the HS deficient cells, while the viral yields were not accordingly reduced. Our data further showed that HS promoted the cell death induced by virus infection, and inhibition of cell death significantly increased the viral replication of ZIKV and DENV2. Collectively, our study described an unexpected role of HS in the viral attachment, replication and cell death induced by ZIKV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.