Abstract

Any disturbance of the ionosphere may affect operational activities based on HF communication. The electron density is a critical parameter that controls levels of HF-signal absorption. A significant part of the HF absorption takes place in the D-layer. The increase of X radiations during solar flares generates noticeable perturbations of the electron density of the D-layer. However, the ionosphere reacts with some delay to the solar forcing. Several studies have addressed this question of ionospheric sluggishness from the time delay between VLF narrow-band transmissions and soft X-ray emissions during solar flares. Our study initially considers the interpretation of the VLF amplitude time profile. In particular, we show that the maximum of X-ray emission can be associated with a reversal in the VLF amplitude variation with time, i.e. exhibiting a peak or a trough. Then, building on this insight, we perform estimates of the time delay between VLF and soft X-rays during 67 events between 2017 and 2021, thus including the major flares of 2017. We show that the time delay can become negative for flares above X2, proving that soft X-rays are not the initial source of ionization in the case of major flares. From a careful analysis of RHESSI data for some events of September 2017, we demonstrate that radiation above 40 keV (i.e. hard X-rays) is an important forcing source of the ionosphere. This is of crucial interest in the frame of space weather forecasting since the hard X-rays are produced several minutes before the peak of soft X-rays.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.