Abstract
Diepoxybutane (DEB) is an alkylating agent that can be used to assess chromosome instability in repair-deficient subjects. Previous authors investigated the role of red blood cells (RBC) in determining individual susceptibility to DEB in normal healthy donors, and demonstrated that a polymorphic enzyme in RBC, Glutathione S-transferase T1 (GSTT1), is involved in DEB detoxification. In the present work we studied the influence of individual GSTM1 and GSTT1 genotypes and the presence of RBC on the frequency of DEB-induced chromosome breakage in lymphocyte cultures from normal individuals and, in particular, the influence of isolated components of RBC: RBC membranes, RBC lysate, and haemoglobin. Our results confirm that individual GSTT1 genotypes modulate the level of genetic lesions induced by DEB; however, this effect was not sufficient to explain the highly significant variation in chromosome breakage between whole blood and RBC-depleted cultures. We showed that RBC can protect cultured lymphocytes against chromosome breakage induced by DEB and we demonstrated the particular role of haemoglobin in the protective effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.